

Archival Report

Number of Alpha Peaks in the Electroencephalogram Is Associated With Clinical Phenotype and Copy Number Variants in Youths With Autism

Vardan Arutiunian, Morgan Opdahl, Catherine A.W. Sullivan, Megha Santhosh, Emily Neuhaus, Heather Borland, Raphael A. Bernier, Susan Y. Bookheimer, Mirella Dapretto, Allison Jack, Shafali Jeste, James C. McPartland, Adam Naples, John D. Van Horn, Kevin A. Pelphrey, Sara Jane Webb, and Abha R. Gupta

ABSTRACT

BACKGROUND: Electroencephalography (EEG) alpha-band neural activity has previously been reported to be altered in autism spectrum disorder (ASD), but no studies have addressed different parameters of alpha-band activity and their relationship to clinical phenotype and copy number variants (CNVs) in ASD.

METHODS: The study included 310 youths with and without ASD and consisted of resting-state EEG, behavioral phenotyping, and genome-wide CNV analysis.

RESULTS: First, the results revealed that alpha peak power was reduced in ASD, and younger-age autistic males had a higher number of peaks compared with younger-age autistic females. Second, a higher number of alpha peaks was related to lower language skills and a higher presence of autistic traits. Finally, a higher number of alpha peaks was related to a higher number of CNVs.

CONCLUSIONS: In this study, we explored a novel measure (number of peaks) associated with both clinical phenotype and genetic burden and provide evidence that supports alterations in alpha-band activity in ASD.

<https://doi.org/10.1016/j.bpsc.2025.10.001>

Autism spectrum disorder (ASD), diagnosed based on difficulties in social communication/interaction and restricted and repetitive behaviors (RRBs), is a heterogeneous neurodevelopmental condition with a prevalence of 1 in 31 children (1,2). According to a number of studies, the neurobiology of ASD can be related to different mechanisms, including excitation/inhibition (E/I) imbalance, disruptions of the thalamocortical circuit, and altered attention systems (3–9). Electroencephalography (EEG) is a technique for recording neural activity, is well suited to biomarker development in neurodevelopmental conditions, and can be collected over brief recording periods (10).

Recent studies using noninvasive scalp EEG have implicated several metrics as being associated with the neurobiology of ASD, and one of those metrics is alpha-band (8–12 Hz in adults) neural activity. Abnormalities in different parameters of this neural activity have been detected in individuals with ASD compared with typically developing (TD) control individuals. For example, most studies have revealed alpha power reduction in autistic individuals (11–15), and this reduction was related to different mechanisms, such as E/I imbalance (16–19) due to abnormal functioning of the GABAergic (gamma-aminobutyric acidergic) inhibitory system

(15), disruptions in the thalamocortical circuit in ASD (9,20), and involvement of children's attention to the task (21,22). Alpha peak frequency has also been reported to be atypical in ASD, tending to be lower compared with TD children and having an atypical developmental trajectory (23,24). Finally, frontal alpha asymmetry in autistic individuals/infants at risk for developing ASD had reverse pattern and atypical age-related change (25,26).

Given the significant contribution of genetics to some of the parameters of resting-state EEG spectral power (27), recent studies have investigated relationships between alpha oscillations and genetic markers in different clinical populations (28–30) using genome-wide copy number variant (CNV) and genome-wide association analyses. However, these studies have focused on raw alpha power consisting of both periodic and aperiodic neural activity and have not used other parameters (e.g., alpha peak frequency, number of alpha peaks). Only one study has addressed aperiodic-adjusted alpha-band parameters and genetic markers (CNVs), but in a mixed group of children with neurodevelopmental disorders (27). No such studies have been conducted with autistic individuals to examine interrelations among EEG aperiodic-adjusted alpha-

band parameters, clinical phenotype, and genetic variables. We aim to fill this gap.

The main goal of the current study was to address alpha-band activity and its relation to clinical phenotype and genetics in a large group of youths with ASD by implementing a multimodal approach including resting-state EEG, behavioral phenotyping, and genome-wide CNV analysis. First, using a novel parameterization algorithm (31), we aimed to calculate aperiodic-adjusted alpha peak parameters (power, frequency, asymmetry, and additional parameters such as the number of peaks) by removing the aperiodic signal [which influences largely oscillatory component of the spectral power (32)] and compare these parameters in the ASD and TD groups. Second, in the autistic cohort, we aimed to assess the associations between alpha peak parameters and behavioral/clinical measures. Finally, we addressed the relationship between alpha peak parameters and genetic variables abstracted from genome-wide CNV analysis (total CNV size, number of genes within the CNVs, and number of CNVs). Therefore, this study focuses on comprehensive characterization of alpha peak parameters and their relationship with both behavioral and genetic markers in ASD.

METHODS AND MATERIALS

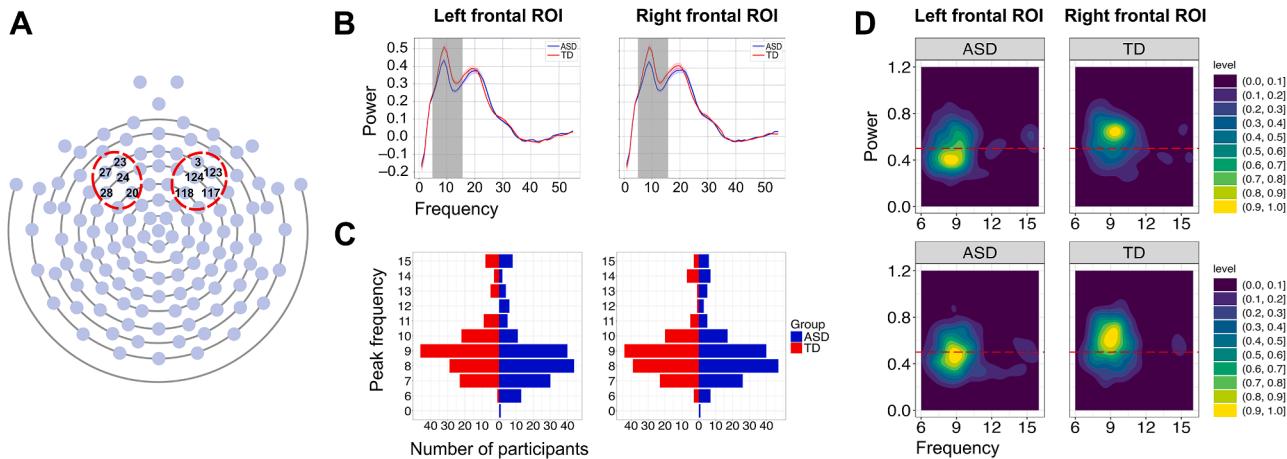
Participants

Two groups of participants ($N = 310$; ages 8–17 years) with valid EEG data were included in the analysis: 164 youths with ASD (72 female) and 146 TD youths (68 female). The data were collected from 4 sites as a part of the GENDAAR Autism Center for Excellence network, including Seattle Children's Research Institute, Boston Children's Hospital/Harvard Medical School, the University of California Los Angeles, and Yale University, with the data coordinating center located at the University of Southern California. Deidentified data were provided to the National Database of Autism Research (NDAR) (NDAR study #2021).

The study was performed in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all parents of children participating in the study; children provided written assent. Demographic information is presented in Table 1.

Behavioral Assessment

All youths with ASD were diagnosed based on DSM-IV-TR or DSM-5 (1,33), and diagnoses were confirmed with the Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) (34), Autism Diagnostic Interview-Revised (35), caregiver-reported developmental history, and expert clinical judgment. For both groups of participants, nonverbal IQ was assessed with the Differential Ability Scales-Second Edition (DAS-II) School Aged Cognitive Battery (36), and language skills were measured with the Clinical Evaluation of Language Fundamentals-4 (CELF-4) (37). Additional phenotypic characteristics were obtained from the Social Responsiveness Scale-2 (SRS-2) (38) and the Vineland Adaptive Behavior Scales-2 (VABS-2) (39).


Table 1. Demographic Characteristics of Study Participants

Characteristics	Group		Statistics
	ASD	TD	
Female/Male	72/92	68/78	–
Age, Months	[96.0–215.0] 151.0 (35.0)	[96.0–216.0] 156.6 (35.0)	$t_{303.6} = -1.41$, $p = .16$
Nonverbal IQ	[57.0–158.0] 100.2 (17.5)	[74.0–147.0] 109.1 (15.1)	$t_{307.7} = -4.83$, $p < .001$
CELF Core Language SS	[40.0–127.0] 91.4 (20.9)	[81.0–134.0] 110.7 (11.2)	$t_{179.6} = -8.82$, $p < .001$
VABS-2			
Communication SS	[49.0–122.0] 76.1 (11.8)	[67.0–135.0] 99.3 (13.2)	$t_{289.8} = -16.07$, $p < .001$
Socialization SS	[46.0–118.0] 72.6 (12.1)	[74.0–145.0] 101.2 (12.6)	$t_{297.6} = -20.20$, $p < .001$
Daily living skills SS	[51.0–119.0] 76.4 (13.8)	[58.0–130.0] 97.7 (14.1)	$t_{298.3} = -13.33$, $p < .001$
SRS Total T Score	[39.0–106.0] 75.3 (11.5)	[37.0–60.0] 43.8 (5.0)	$t_{206.15} = 30.39$, $p < .001$
ADOS-2			
CSS total	[4.0–10.0] 6.9 (1.8)	NA	–
CSS SA	[3.0–10.0] 7.0 (1.9)	NA	–
CSS RRB	[0.0–10.0] 6.4 (2.9)	NA	–
Ethnicity			
Hispanic or Latino	17 (10%)	20 (14%)	–
Not Hispanic or Latino	98 (60%)	94 (64%)	–
Other	2 (1%)	2 (1%)	–
Not Answered	47 (29%)	30 (21%)	–
Race			
Asian	4 (2%)	8 (5%)	–
Black or African American	6 (5%)	9 (6%)	–
Mixed Race	17 (10%)	12 (8%)	–
Other	4 (2%)	1 (1%)	–
White	86 (52%)	86 (59%)	–
Not Answered	47 (29%)	30 (21%)	–

Values are presented as n , [range] mean (SD), or n (%).

ADOS-2, Autism Diagnostic Observation Schedule, Second Edition; ASD, autism spectrum disorder; CELF, Clinical Evaluation of Language Fundamentals; CSS, calibrated severity score; NA, not applicable; RRB, Repetitive and Repetitive Behavior; SA, Social Affect; SRS, Social Responsiveness Scale; SS, standard score; TD, typically developing; VABS-2, Vineland Adaptive Behavior Scales-2.

Youths with ASD were excluded if they had known chromosomal syndromes related to ASD (e.g., fragile X syndrome), co-occurring neurological disorders (e.g., epilepsy), significant visual and auditory impairments, or sensorimotor difficulties that would prevent completion of study procedures. All participants with ASD had either verbal or nonverbal IQ ≥ 70 . TD youths had no familial history of ASD and no elevation of autistic traits according to the SRS-2 (T score ≤ 60) or the Social Communication Questionnaire (40) (raw score < 11), and all had normal nonverbal IQ (see Table 1).

Figure 1. Alpha-band neural activity in the left and right frontal regions of interest (ROIs) in youths with autism spectrum disorder (ASD) and typically developing (TD) control participants. **(A)** Electroencephalography (EEG) cap with highlighted electrodes used for the analysis; **(B)** aperiodic-adjusted power spectra in the left and right ROIs at the alpha frequency range (6–15.99 Hz); **(C)** the distribution of central frequency in ASD and TD groups of youths; **(D)** heatmaps representing the distribution of alpha peak power in both groups of youths (dashed red line is set to 0.5 for visualization purposes).

EEG Data Acquisition, Processing, and Alpha Peak Identification

EEG data were collected with EGI 128-channel Net Amps 300 system with HydroCel nets (Magstim EGI Inc.), using Net Station 4.4.2, 4.5.1, or 4.5.2 with a standard Net Station acquisition template. Nets were available without outriders (eye electrodes 125, 126, 127, and 128) for participants with facial sensory sensitivities. Data were collected at 500-Hz sampling rate, referenced to Cz electrode (vertex), and impedances were <50 k Ω .

Resting-state EEG was acquired via an eyes-open condition. The recording session consisted of 3 runs of 6×16 second blocks of videos (dynamic screen saver-type images that had limited or slow movement). To calculate power spectral density (PSD), we used BEAPP (41) in MATLAB (version 2021a; The MathWorks, Inc.), consisting of 1) formatting the MFF file for MATLAB; 2) bandpass filtering 1 to 100 Hz; 3) downsampling from 500 Hz to 250 Hz; 4) implementation of the HAPPE module for artifact detection and rejection (42), including removal of 60-Hz line noise, rejection of bad channels, wavelet enhanced thresholding, independent component analysis with automated component rejection, bad channel interpolation, and rereferencing to average; 5) segmentation of the continuous file into 1-second epochs; 6) rejection of bad segments (± 40 μ V); and 7) calculation of the PSD using Hanning window on clean segments. A total of 10 electrodes over the frontal region were used for the analysis (electrodes 23, F3–24, 27, 28, 20 for the left regions of interest [ROIs]; 3, 117, 123, F4–124, 118 for the right ROI) (see Figure 1). PSD was calculated for each electrode and averaged within these ROIs. As the raw PSD includes both periodic and aperiodic components (31), we used the *specparam* toolbox (32) in Python version 3.10 to parametrize the neural spectral power and remove aperiodic component. This allowed us to estimate the alpha peak parameters without the non-oscillatory component of the PSD. We used the following settings to model aperiodic and periodic components:

`peak_width_limit = [1.5, 6], n_peaks = 6, peak_height = 0.10, peak_threshold = 2, and frequency_range = [1, 55].` We focused on the 6 to 15.99-Hz frequency range [the range from (43,44)] using the output of *specparam* modeling to identify individual alpha peak power, peak frequency, and the number of peaks for each participant. The model fits, R^2 , and errors are provided in the [Supplement—Specparam model fit parameters](#). The decision to extract the peak parameters from a slightly wider frequency range was motivated by the anticipated developmental changes in peak frequency in young children (44,45) as well as the absence of alpha peaks in the adult-like traditional frequency range in the large number of participants from our study (see the [Supplement—Frequency ranges for alpha-band activity](#)). If a participant had more than one peak in the alpha range, the power and peak frequency were taken for the most prominent/higher peak. The asymmetry was calculated as a difference between right and left ROI power. The groups of youths did not differ in the number of artifact-free epochs (ASD group: $\text{mean}_{\text{epoch}} = 101.06$, range 62–123; TD group: $\text{mean}_{\text{epoch}} = 101.85$, range 78–123; $t_{303.18} = -0.47$, $p = .63$).

Genotyping and CNV Detection

Blood samples were collected from the participants with ASD to obtain genomic DNA and processed by the Rutgers University Cell and Data Repository using standard protocols (Genta Puregene Blood DNA extraction kit; Qiagen). All DNA samples were hybridized and genotyped by the HumanOmni2.5M-8 BeadChip microarray (Illumina) to minimize batch effects and variation. Genotyping data were analyzed with PLINK version 1.07 (46) using the forward stand and confirmed the reported sex of all participants.

CNV detection (duplications and deletions) was performed using 3 algorithms: PennCNV version 1.0.4, QuantiSNP version 1.1, and GNOSIS (47). Analysis and merging of CNV predictions used CNVision (47). All rare generic CNVs [$\geq 50\%$ of CNV at $\leq 1\%$ frequency in the Database of Genomic Variants

(47]) (hereafter, CNVs) predicted by at least PennCNV and QuantiSNP and having a CNVision p_{CNV} of $\leq .001$, i.e., those considered high-quality predictions (48), were obtained for further analysis. Subsequent analyses combined duplications and deletions to maximize the number of CNVs available for examination; separating the 2 types led to low numbers and low statistical power.

Statistical Analysis

Statistical analysis was performed in R (49) using the *lme4* package (50), and the data were plotted with *ggplot2* (51). A correction for multiple comparisons (false discovery rate [FDR]) was applied to each set of analyses, and p values were corrected with *p.adjust.method* in R.

RESULTS

Descriptive Summary of EEG Measures

In almost all participants, we were able to identify the alpha peak, except in 2 cases (one participant with ASD did not have a peak in the left ROI, and another participant with ASD did not have a peak in the right ROI). The shape of PSD for each ROI as well as alpha peak frequency and peak power distribution across participants are shown in Figure 1. Individual PSDs for both groups of children can be found in the *Supplement*. Most participants had alpha peak in a canonical adult-like frequency range (mean frequency, left ROI = 9.5 Hz, right ROI = 9.5 Hz) (Figure 1C). The range of the peak number was 1 to 3, with a mean of 1.6 for each group and ROI.

Between-Group Comparisons on Alpha Peak Parameters and Asymmetry

To perform between-group comparisons for the left and right frontal ROIs in alpha peak power, peak frequency, and the number of peaks, we fitted linear models with the EEG measures as dependent variables and tested for main effects of group, sex, and age.

The outputs of the models are presented in Table 2. To summarize, first, alpha peak power was significantly reduced in the ASD group in both ROIs (Figure 2); no sex or age effects were identified. Second, for the alpha peak frequency, no significant effects were shown (Figure 2). Third, the number of alpha peaks was related to sex and age, such that the males had a higher number of peaks in comparison with females, and there was an age-related decrease in the number of peaks in the left ROI. Finally, the frontal alpha asymmetry increased with age, reflecting possible maturational changes in the frontal brain regions associated with executive functions (Figure 2).

Sex and Age Effects in the Number of Alpha Peaks

As the number of alpha peaks was related to both sex and age, we conducted the follow-up exploratory analysis in both ASD and TD youths. We fitted generalized liner models within each group with the number of peaks as a dependent variable and the effect of sex nested within the age window (Age1 = 8–11 years, Age2 = 12–15 years, Age3 = 16–18 years).

In the TD group, there was no relationship between the number of peaks and sex in any time window in either ROI (left

ROI: Age1, $\beta = 0.65$, SE = 0.63, $z = 1.04$, $p = .30$; Age2, $\beta = 0.37$, SE = 0.54, $z = 0.68$, $p = .49$; Age3, $\beta = 0.29$, SE = 0.73, $z = 0.39$, $p = .70$; right ROI: Age1, $\beta = 0.41$, SE = 0.57, $z = 0.73$, $p = .46$; Age2, $\beta = 0.70$, SE = 0.55, $z = 1.28$, $p = .20$; Age3, $\beta = -0.25$, SE = 0.73, $z = -0.34$, $p = .73$) (Figure 3).

In contrast, in the ASD group, in both the left and right ROIs, there was a relationship between sex and the number of peaks in the 8- to 11-year-old group, such that ASD males had a higher number of peaks in comparison with ASD females (left ROI: $\beta = 1.50$, SE = 0.51, $z = 2.94$, FDR-corrected $p = .006$; right ROI: $\beta = 1.36$, SE = 0.49, $z = 2.74$, FDR-corrected $p = .006$). In other age windows, there were no significant effects (left ROI: Age2, $\beta = 0.05$, SE = 0.52, $z = 0.10$, $p = .92$; Age3, $\beta = 0.50$, SE = 0.76, $z = 0.66$, $p = .51$; right ROI: Age2, $\beta = 0.30$, SE = 0.53, $z = 0.58$, $p = .56$; Age3, $\beta = -0.14$, SE = 0.76, $z = -0.18$, $p = .85$) (see Figure 3).

Relationship Between Alpha Peak Parameters and Clinical Phenotype in Youths With ASD

To examine the relationships between alpha peak parameters and clinical phenotype in the ASD group, we fitted linear models for the left and right ROIs with the EEG measures as dependent variables and included 6 predictors: nonverbal IQ, language skills (CELF-4 Core Language standard score [SS]), a measure of RRB (SRS-2 RRB T score), and social skills (VABS-2 Socialization SS) and included age and sex as covariates.

After correction for multiple comparisons, 2 effects remained statistically significant, including the relationship between the number of alpha peaks and language skills ($\beta = -0.05$, SE = 0.01, $z = -3.03$, $p = .004$) and between the number of alpha peaks and RRB ($\beta = 0.08$, SE = 0.02, $z = 3.10$, $p = .002$) in the right ROI (Table 3 and Figure 4). A higher number of peaks was associated with lower language skills and a higher presence of autistic traits. As the number of alpha peaks was also related to age, we conducted a follow-up Pearson's correlation analysis between behavioral measures (CELF Core Language SS and SRS RRB T score) and age to confirm that the observed brain-behavior relationships were not driven by the age effect. None of the behavioral measures were correlated with age (CELF: $r = 0.29$, FDR-corrected $p = .28$; RRB: $r = 0.10$, FDR-corrected $p = .18$).

Associations of Alpha Peak Parameters With Rare Genic CNVs in Youths With ASD

The last set of analyses addressed the relationships between EEG measures and the genetic variables abstracted from genome-wide CNV analysis in the ASD group. We calculated Spearman's correlations between EEG measures (alpha peak power, the number of alpha peaks, and the asymmetry) and genetic measures (total CNV size, number of genes within the CNVs, number of CNVs per individual). Peak frequency was excluded from the analysis because we did not find a between-group difference in this variable or the relationships with the clinical phenotype and age.

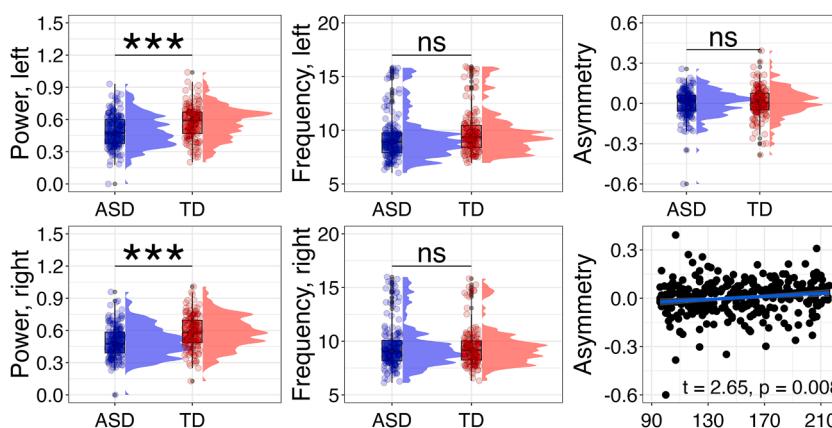
The summary of results is presented in Table 4. We identified a significant correlation between the number of alpha peaks in the left ROI and the number of CNVs. A greater

Table 2. Between-Group Comparisons in Electroencephalography Alpha Peak Parameters

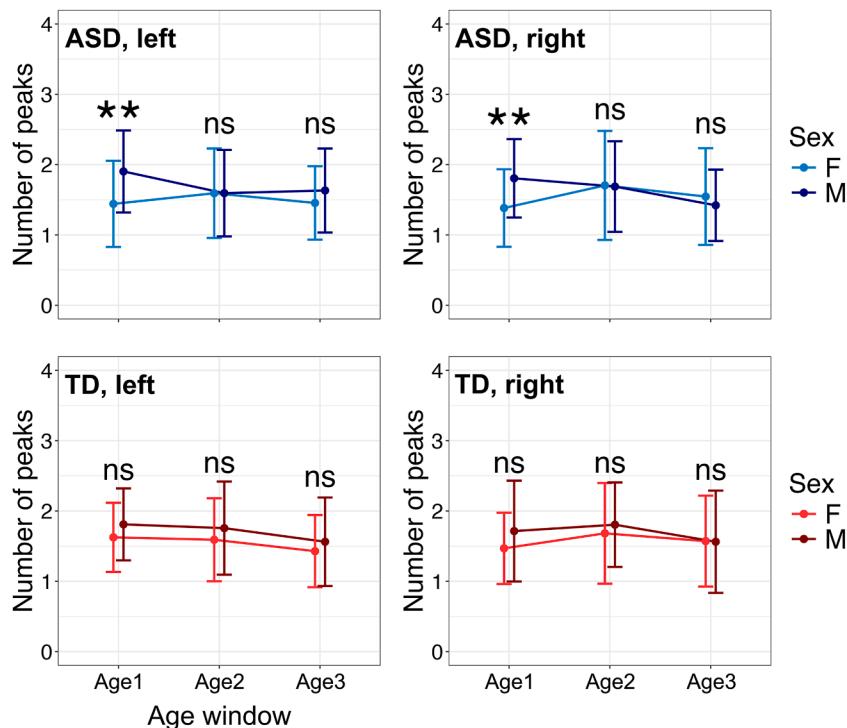
Measure	ASD	TD	Predictor	Analysis	
				Model Output	
Left Frontal ROI					
Peak Power	0.49 (0.15)	0.57 (0.15)	Group	$\beta = 0.09$, SE = 0.02, $t_{306} = 4.93$, $p < .001^{***}$	
			Sex	$\beta = 0.02$, SE = 0.02, $t_{306} = 1.94$, $p = .38$	
			Age	$\beta = -0.00$, SE = 0.01, $t_{306} = -1.77$, $p = .16$	
Peak Frequency, Hz	9.27 (2.26)	9.81 (2.09)	Group	$\beta = 0.55$, SE = 0.25, $t_{306} = 2.21$, $p = .06$	
			Sex	$\beta = 0.35$, SE = 0.25, $t_{306} = 1.38$, $p = .17$	
			Age	$\beta = -0.00$, SE = 0.00, $t_{306} = -0.15$, $p = .88$	
Number of Peaks	1.63 (0.62)	1.66 (0.58)	Group	$\beta = 0.19$, SE = 0.24, $z = 0.80$, $p = .74$	
			Sex	$\beta = 0.61$, SE = 0.24, $z = 2.57$, $p = .01^*$	
			Age	$\beta = -0.01$, SE = 0.00, $z = -2.48$, $p = .02^*$	
Right Frontal ROI					
Power	0.49 (0.15)	0.58 (0.16)	Group	$\beta = 0.00$, SE = 0.00, $t_{306} = 5.32$, $p < .001^{***}$	
			Sex	$\beta = 0.00$, SE = 0.00, $t_{306} = 0.87$, $p = .38$	
			Age	$\beta = 0.00$, SE = 0.00, $t_{306} = 0.08$, $p = .93$	
Peak Frequency, Hz	9.49 (2.25)	9.47 (1.83)	Group	$\beta = -0.03$, SE = 0.23, $t_{306} = -0.13$, $p = .89$	
			Sex	$\beta = 0.42$, SE = 0.23, $t_{306} = 1.79$, $p = .14$	
			Age	$\beta = 0.00$, SE = 0.00, $t_{306} = 1.42$, $p = .30$	
Number of Peaks	1.61 (0.63)	1.65 (0.64)	Group	$\beta = 0.08$, SE = 0.23, $z = 0.34$, $p = .74$	
			Sex	$\beta = 0.57$, SE = 0.23, $z = 2.48$, $p = .01^*$	
			Age	$\beta = -0.00$, SE = 0.00, $z = -0.52$, $p = .60$	
Asymmetry	-0.00 (0.10)	0.01 (0.11)	Group	$\beta = 0.01$, SE = 0.01, $t_{306} = 0.53$, $p = .60$	
			Sex	$\beta = -0.00$, SE = 0.01, $t_{306} = -0.46$, $p = .64$	
			Age	$\beta = 0.00$, SE = 0.00, $t_{306} = 2.65$, $p < .008^{**}$	

Values are presented as mean (SD). All p values are false discovery rate corrected.

* $p < .05$, ** $p < .01$, *** $p < .001$.


ASD, autism spectrum disorder; ROI, region of interest; TD, typically developing.

number of peaks was related to a higher number of CNVs ($r = 0.26$, FDR-corrected $p = .04$) (Figure 4).


Sex Differences in Clinical Measures in Younger Autistic Individuals

We identified that a greater number of alpha peaks was related to lower language skills and a higher presence of

autistic traits as well as a higher number of peaks in autistic males in comparison with autistic females at younger ages (8–11 years). In addition, we showed that a greater number of peaks was associated with a higher number of CNVs. This exploratory follow-up analysis aimed to reveal whether younger-age male and female autistic individuals are different in their clinical/behavioral characteristics.

Figure 2. Between-group comparisons of the alpha peak parameters and age-related changes in the frontal alpha asymmetry (across the autism spectrum disorder [ASD] and typically developing [TD] groups; age in months). Significance is labeled with *** $p < .001$. All p values are false discovery rate corrected. ns, nonsignificant.

Figure 3. Sex differences in the number of alpha peaks in youths with and without autism spectrum disorder (ASD) at 3 age windows: T1 = 8 to 11 years, T2 = 12 to 15 years, T3 = 16 to 18 years. The significance is labeled with ** $p < .01$. All p values are false discovery rate corrected. F, female; M, male; ns, nonsignificant; TD, typically developing.

We fitted a generalized linear model with sex as the dependent variable and included all behavioral measures used before as well as the ADOS-2 calibrated total severity score as main effects. The results showed no difference between male and female ASD individuals on any measure (nonverbal IQ: $\beta = 0.01$, SE = 0.02, $z = 0.61$, $p = .543$; CELF-4 Core Language SS: $\beta = -0.00$, SE = 0.02, $z = -0.38$, $p = .702$; SRS-2 RRB T score: $\beta = 0.01$, SE = 0.03, $z = 0.43$, $p = .670$; VABS-2 Socialization SS: $\beta = -0.02$, SE = 0.03, $z = -0.70$, $p = .482$; ADOS-2 calibrated total severity score: $\beta = 0.18$, SE = 0.17, $z = 0.97$, $p = .33$).

DISCUSSION

The current study focused on alpha-band neural activity and its relationship with clinical phenotype and copy number variation in a large sample of youths with ASD. In general, the study replicated the previous findings of a broad reduction in alpha power in autistic individuals while revealing a novel measure (a number of alpha peaks) associated with both clinical phenotype and genetic markers.

Between-group comparisons in alpha peak parameters demonstrated that youths with ASD had reduced peak power compared with TD participants. This corresponds to previous findings that showed a similar alpha power reduction during rest in autistic individuals (11–15,52). Abnormalities in resting-state alpha power can be related to cortical E/I imbalance and altered thalamocortical connections in ASD (3–9), and the reduction of alpha power during rest can reflect increased level of activation in the neural circuits. Different studies with animals and humans have revealed that GABAergic inhibitory

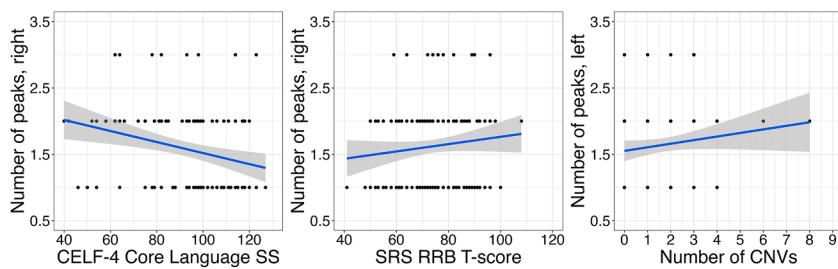
neurotransmission is crucially involved in the generation of alpha oscillations, and it has been established that alpha power can be impacted during different GABA-related pharmacological manipulations with thalamus (53–56). Therefore, we propose that the reduction in alpha power in autistic individuals could reflect shifted neural balance toward more excitation (18,19) and atypical thalamic activity (53,56) related to possible dysfunction of the GABAergic system. It is important to note that although the autistic group had reduced alpha power in comparison with the TD group, the asymmetry and pattern of the age-related increase of alpha asymmetry were similar in the 2 groups, perhaps reflecting structural age-related changes in frontal brain regions (57).

In this study, we were able to reveal a novel EEG biomarker associated with age, sex, clinical phenotype, and genetics. Specifically, the results showed age-related decreases in the number of alpha peaks. It is largely unknown what neurobiological mechanism is represented by the number of peaks in the EEG frequency bands. In infants, it has been shown that the number of peaks in the low-frequency range (4–12 Hz, theta/alpha) decreases during the first year of age (20), but this is the first report of age-related changes in peaks during childhood and adolescence. In a sample of healthy adults, multiple alpha peaks and the variability in the number of alpha peaks have been associated with 2 or more independent brain sources that generated alpha-band activity simultaneously (58). If multiple sources are generating alpha-band activity, perhaps the decrease in the number of peaks is related to structural changes and shapes of the cortex, so that older participants have a more dominant source that contributed to

Table 3. The Relationships Between Electroencephalography Alpha Peak Parameters and Clinical Phenotype in Youths With Autism Spectrum Disorder

Measure	Predictor	Analysis	
			Model Output
Left Frontal ROI			
Peak Power	Nonverbal IQ	$\beta = -0.00$, SE = 0.00, $t_{99} = -1.53$, $p = .13$	
	CELF-4 core language SS	$\beta = 0.00$, SE = 0.00, $t_{99} = 1.00$, $p = .31$	
	SRS-2 RRB T score	$\beta = 0.00$, SE = 0.00, $t_{99} = 0.80$, $p = .42$	
	VABS-2 socialization SS	$\beta = -0.00$, SE = 0.00, $t_{99} = -0.06$, $p = .95$	
	Age	$\beta = 0.00$, SE = 0.00, $t_{99} = 0.21$, $p = .83$	
	Sex	$\beta = 0.03$, SE = 0.37, $t_{99} = 0.82$, $p = .41$	
Peak Frequency, Hz	Nonverbal IQ	$\beta = 0.02$, SE = 0.01, $t_{99} = 1.33$, $p = .18$	
	CELF-4 core language SS	$\beta = -0.01$, SE = 0.01, $t_{99} = -0.69$, $p = .48$	
	SRS-2 RRB T score	$\beta = 0.03$, SE = 0.02, $t_{99} = 1.48$, $p = .14$	
	VABS-2 socialization SS	$\beta = 0.01$, SE = 0.02, $t_{99} = 0.51$, $p = .60$	
	Age	$\beta = 0.01$, SE = 0.00, $t_{99} = 1.48$, $p = .14$	
	Sex	$\beta = 0.46$, SE = 0.58, $t_{99} = 0.79$, $p = .42$	
Number of Peaks	Nonverbal IQ	$\beta = -0.00$, SE = 0.01, $z = -0.20$, $p = .83$	
	CELF-4 core language SS	$\beta = 0.00$, SE = 0.01, $z = 0.12$, $p = .90$	
	SRS-2 RRB T score	$\beta = 0.00$, SE = 0.01, $z = 0.44$, $p = .65$	
	VABS-2 socialization SS	$\beta = -0.00$, SE = 0.02, $z = -0.22$, $p = .82$	
	Age	$\beta = -0.00$, SE = 0.00, $z = -0.35$, $p = .72$	
	Sex	$\beta = 0.33$, SE = 0.48, $z = 0.70$, $p = .42$	
Right Frontal ROI			
Power	Nonverbal IQ	$\beta = -0.00$, SE = 0.00, $t_{99} = -1.71$, $p = .09$	
	CELF-4 core language SS	$\beta = 0.00$, SE = 0.00, $t_{99} = 0.93$, $p = .35$	
	SRS-2 RRB T score	$\beta = 0.00$, SE = 0.00, $t_{99} = 0.89$, $p = .37$	
	VABS-2 socialization SS	$\beta = -0.00$, SE = 0.00, $t_{99} = -1.10$, $p = .27$	
	Age	$\beta = 0.00$, SE = 0.00, $t_{99} = 0.40$, $p = .68$	
	Sex	$\beta = 0.01$, SE = 0.03, $t_{99} = 0.33$, $p = .73$	
Peak Frequency, Hz	Nonverbal IQ	$\beta = -0.00$, SE = 0.01, $t_{99} = -0.34$, $p = .93$	
	CELF-4 core language SS	$\beta = 0.00$, SE = 0.01, $t_{99} = 0.08$, $p = .93$	
	SRS-2 RRB T score	$\beta = 0.00$, SE = 0.02, $t_{99} = 0.12$, $p = .90$	
	VABS-2 socialization SS	$\beta = -0.00$, SE = 0.02, $t_{99} = -0.19$, $p = .85$	
	Age	$\beta = 0.01$, SE = 0.00, $t_{99} = 1.39$, $p = .16$	
	Sex	$\beta = 0.91$, SE = 0.54, $t_{99} = 1.67$, $p = .09$	
Number of Peaks	Nonverbal IQ	$\beta = 0.02$, SE = 0.01, $z = 1.42$, $p = .15$	
	CELF-4 core language SS	$\beta = -0.05$, SE = 0.01, $z = -3.03$, $p = .004^{**}$	
	SRS-2 RRB T score	$\beta = 0.08$, SE = 0.02, $z = 3.10$, $p = .002^{**}$	
	VABS-2 socialization SS	$\beta = 0.03$, SE = 0.02, $z = 1.33$, $p = .18$	
	Age	$\beta = 0.01$, SE = 0.00, $z = 1.28$, $p = .19$	
	Sex	$\beta = 0.18$, SE = 0.54, $z = 0.34$, $p = .72$	

Significant p values are false discovery rate corrected.


** $p < .01$.

ASD, autism spectrum disorder; CELF-4, Clinical Evaluation of Language Fundamentals-4; CSS, calibrated severity score; ROI, region of interest; RRB, Restrictive and Repetitive Behavior; SA, Social Affect; SS, standard score; TD, typically developing; VABS-2, Vineland Adaptive Behavior Scales-2.

most of the scalp signal. Understanding why peak number decreases with age will require additional information from imaging or model systems.

Also, we showed that the number of alpha peaks differed between males and females; specifically, autistic males had higher number of peaks in comparison with autistic females during the younger age period (8–11 years). Differences between male and female autistic individuals have been demonstrated in previous neuroimaging studies (52,59,60).

Our results are also consistent with the findings from studies on children and youths with attention-deficit/hyperactivity disorder that showed differences between male and female individuals (61) with evidence of later maturation of different brain areas in males in comparison with females (62). We confirmed this, showing the age-related decrease in the number of alpha peaks and that autistic males have a higher number of peaks in comparison with autistic females at younger ages.

Figure 4. The relationships between the number of alpha peaks and clinical phenotype/genetic markers. CELF-4, Clinical Evaluation of Language Fundamentals-4; RRB, Restrictive and Repetitive Behavior; SRS, Social Responsiveness Scale; SS, standard score.

Our analysis of the relationship between alpha peak parameters and clinical phenotype in autistic youth has revealed a specific association between the number of alpha peaks and behavioral measures. Higher number of peaks was related to greater autistic traits on one of the core domains, i.e., RRBs. Also, higher number of peaks was associated with lower language skills, which is one of the most common features in ASD (60). Again, the neural mechanisms of the number of peaks are still unknown; however, based on our findings, it is clear that the higher number of peaks in autistic individuals is related to difficulties in specific domains of functioning. Importantly, although the number of peaks was also related to age and sex at a young age, we did not find any relationships between age and behavioral measures, and there were no sex differences on clinical/behavioral measures in youths with ASD. This means that the relationship between the number of peaks and behavioral measures in autistic individuals is not driven by age or sex and rather represents a distinct phenomenon.

An important insight into the biology of alpha peak parameters comes from our EEG-genomic analysis. Rare genetic CNVs are genomic duplications or deletions that are a significant source of genetic disorders (63). Larger CNVs are

related to behavioral and brain abnormalities in different psychiatric and neurological disorders (64–67). In our study, we revealed a relationship between the number of CNVs and the number of alpha peaks in autistic youth, wherein the higher number of CNVs (and, thus, larger genomic alterations) was related to a higher likelihood of more than one alpha peak.

We acknowledge some limitations of the current study. First, although this large sex-balanced dataset combines neural functioning, behavioral/clinical phenotyping, and genome-wide CNV analysis in ASD, it included mostly average-to-high cognitive ability individuals. Inclusion of individuals with lower cognitive ability would reveal whether this neural measure is related to functioning in the full spectrum of autistic individuals. Second, our sample included 8- to 17-year-old youths, and given the increase in the number of alpha peaks with age, it would be beneficial to address preschoolers and young adults to determine whether the shape of the maturational pattern changes. Finally, further studies are needed to replicate the findings and confirm that the results are not driven by the methodological specificity of the study (e.g., broader alpha frequency range).

Conclusions

We used a multimodal approach combining EEG neural functioning, genome-wide CNV analysis, and behavioral phenotyping in a large cohort of youths with and without ASD to investigate EEG alpha-band neural activity and its relationship with behavior and genetics in autistic youths. Our study demonstrated that a higher number of peaks was related to a worse behavioral phenotype and larger genomic alterations. The neurobiology of peaks in EEG frequency bands is largely unknown; therefore, future studies should address this EEG parameter through multimodal assessments and clarifying mechanisms in animal models.

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Institute of Mental Health Autism Centers of Excellence Network (Grant Nos. R01MH10028 [to KAP] and R01MH117982 [to MD and KAP]) and the University of Washington Intellectual and Developmental Disabilities Research Center (Grant No. U54HD083091).

We thank the families, parents, and children who participated in our study at our 4 data collection sites. The ACE GENDAAR Network also included contributions from Katy Ankenman, M.S.W., Elizabeth Aylward, Ph.D., Veronica Kang, Ph.D., Erin J. Libsack, Ph.D., and Désirée Lussier-Lévesque, Ph.D., who were formerly at Seattle Children's Research

Table 4. Correlations Between Alpha Peak Parameters and Genetic Measures

	Genetic Variables					
	Total CNV Size ^a		Number of CNVs ^b		Number of Genes Within CNVs ^c	
	<i>r</i>	<i>p</i>	<i>r</i>	<i>p</i>	<i>r</i>	<i>p</i>
Frontal Alpha						
Left Frontal ROI						
Power	0.02	.82	0.02	.97	0.19	.13
Number of peaks	−0.04	.82	0.26	.04*	0.18	.13
Right Frontal ROI						
Power	0.12	.47	−0.02	.97	0.19	.13
Number of peaks	−0.11	.47	−0.00	.97	0.04	.65
Asymmetry	0.14	.47	−0.02	.97	0.05	.65

All *p* values are false discovery rate corrected.

**p* < .05.

CNV, copy number variation; max, maximum; min, minimum; ROI, region of interest.

^aMean = 250,089.1, range = 909–4,050,194.

^bMean = 2.33, range = 1–8.

^cMean = 4.07, range = 1–21.

EEG Alpha in Relation to Behavior and Genetics in ASD

Institute; Sarah Corrigan, L.L.M., and Waylon Howard, Ph.D., who are currently at Seattle Children's Research Institute; Laura A. Edwards, Ph.D., and Jack Keller, who were formerly at Boston Children's Hospital; Rachael Tillman, Ph.D., who was formerly at the Yale Child Study Center; Scott Huberty, Ph.D., who was formerly at the University of California Los Angeles; Zachary Jacokes, who is currently at the University of Virginia; Carinna Torgerson, who is currently at the University of Southern California; and Charles Nelson, who is currently at Boston Children's Hospital and the Harvard Medical School.

The behavioral and EEG data from the current study are available via the NIMH Data Archive Data Collection #2021. All genetic and biospecimen data from ACE study participants were contributed to the NIMH Repository and Genomics Resource (<https://www.nimhgenetics.org>) as well as archived through Sampled, Inc. (<http://sampled.com>), Infinity Biologix/RUCDR. The code for statistical analysis is available in the *Supplement*.

JCM consults or has consulted with Customer Value Partners, BridgeBio, Determined Health, Apple, and BlackThorn Therapeutics; has received research funding from Janssen Research and Development; serves on the scientific advisory boards of Pastorus and Modern Clinics; and receives royalties from Guilford Press, Lambert, Oxford, and Springer. All other authors report no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From the Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington (VA, MO, MS, EN, HB, SJW); Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut (CAWS, ARG); Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington (EN, RAB, SJW); Institute on Human Development and Disability, University of Washington, Seattle, Washington (EN, SJW); Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (SYB, MD); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (SYB, MD); Department of Psychology, George Mason University, Fairfax, Virginia (AJ); Department of Pediatrics and Neurology, University of Southern California Keck School of Medicine, Children's Hospital of Los Angeles, Los Angeles, California (SJ); Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut (JCM, AN, ARG); School of Data Science, University of Virginia, Charlottesville, Virginia (JDVH); Department of Psychology, University of Virginia, Charlottesville, Virginia (JDVH); Department of Neurology, School of Medicine, University of Virginia, Charlottesville, Virginia (KAP); and Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, Connecticut (ARG).

SJW and ARG contributed equally to this work.

Address correspondence to Sara Jane Webb, Ph.D., at sara.webb@seattlechildrens.org.

Received May 13, 2025; revised Sep 20, 2025; accepted Oct 5, 2025.

Supplementary material cited in this article is available online at <https://doi.org/10.1016/j.bpsc.2025.10.001>.

REFERENCES

1. American Psychiatric Association (2013): Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed. Washington, DC: American Psychiatric Publication.
2. Shaw KA, Williams S, Patrick ME, Valencia-Prado M, Durkin MS, Howerton EM, et al. (2025): Prevalence and early identification of autism spectrum disorder among children aged 4 and 8 years - Autism and Developmental Disabilities Monitoring Network, 16 sites, United States, 2022. *MMWR Surveill Summ* 74:1-22.
3. Antoine MW, Langberg T, Schneppel P, Feldman DE (2019): Increased excitation-inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models. *Neuron* 101:648-661.e4.
4. Gatto CL, Broadie K (2010): Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. *Front Synaptic Neurosci* 2:4.
5. Cona G, Chiossi F, Di Tomasso S, Pellegrino G, Piccione F, Bisiacchi P, Arcara G (2020): Theta and alpha oscillations as signatures of internal and external attention to delayed intentions: A magnetoencephalography (MEG) study. *Neuroimage* 205:116295.
6. Hanslmayr S, Gross J, Klimesch W, Shapiro KL (2011): The role of alpha oscillations in temporal attention. *Brain Res Rev* 67:331-343.
7. Rubenstein JLR, Merzenich MM (2003): Model of autism: Increased ratio of excitation/inhibition in key neural systems. *Genes Brain Behav* 2:255-267.
8. Sohal VS, Rubenstein JLR (2019): Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. *Mol Psychiatry* 24:1248-1257.
9. Woodward ND, Giraldo-Chica M, Rogers B, Cascio CJ (2017): Thalamocortical dysconnectivity in autism spectrum disorder: An analysis of the autism Brain Imaging data Exchange. *Biol Psychiatry Cogn Neurosci Neuroimaging* 2:76-84.
10. Webb SJ, Naples AJ, Levin AR, Hellemann G, Borland H, Benton J, et al. (2023): The autism biomarkers consortium for clinical trials: Initial evaluation of a battery of candidate EEG biomarkers. *Am J Psychiatry* 180:41-49.
11. Arutunian V, Arcara G, Buyanova I, Fedorov M, Davydova E, Pereverzeva D, et al. (2024): Abnormalities in both stimulus-induced and baseline MEG alpha oscillations in the auditory cortex of children with autism spectrum disorder. *Brain Struct Funct* 229:1225-1242.
12. Dawson G, Klinger LG, Panagiotides H, Lewy A, Castellon P (1995): Subgroups of autistic children based on social behavior display distinct patterns of brain activity. *J Abnorm Child Psychol* 23:569-583.
13. Edgar JC, Heiken K, Chen YH, Herrington JD, Chow V, Liu S, et al. (2015): Resting-state alpha in autism spectrum disorder and alpha associations with thalamic volume. *J Autism Dev Disord* 45:795-804.
14. Neuhaus E, Lowry SJ, Santhosh M, Kresse A, Edwards LA, Keller J, et al. (2021): Resting state EEG in youth with ASD: Age, sex, and relation to phenotype. *J Neurodev Disord* 13:33.
15. Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA (2013): Resting state EEG abnormalities in autism spectrum disorders. *J Neurodev Disord* 5:24.
16. Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G (2011): Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. *Front Psychol* 2:99.
17. Thies M, Zrenner C, Ziemann U, Bergmann TO (2018): Sensorimotor mu-alpha power is positively related to corticospinal excitability. *Brain Stimul* 11:1119-1122.
18. Chapeton JI, Haque R, Wittig JH, Inati SK, Zaghloul KA (2019): Large-scale communication in the human brain is rhythmically modulated through alpha coherence. *Curr Biol* 29:2801-2811.e5.
19. Jensen O, Mazaheri A (2010): Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. *Front Hum Neurosci* 4:186.
20. Wilkinson CL, Yankowitz LD, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, et al. (2024): Developmental trajectories of EEG aperiodic and periodic components in children 2-44 months of age. *Nat Commun* 15:5788.
21. Händel BF, Haarmeier T, Jensen O (2011): Alpha oscillations correlate with the successful inhibition of unattended stimuli. *J Cogn Neurosci* 23:2494-2502.
22. Klimesch W (2012): Alpha-band oscillations, attention, and controlled access to stored information. *Trends Cogn Sci* 16:606-617.
23. Dickinson A, DiStefano C, Senturk D, Jeste SS (2018): Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. *Eur J Neurosci* 47:643-651.
24. Finn CE, Han GT, Naples AJ, Wolf JM, McPartland JC (2023): Development of peak alpha frequency reflects a distinct trajectory of neural maturation in autistic children. *Autism Res* 16:2077-2089.
25. Gabard-Durnam L, Tierney AL, Vogel-Farley V, Tager-Flusberg H, Nelson CA (2015): Alpha asymmetry in infants at risk for autism spectrum disorders. *J Autism Dev Disord* 45:473-480.

26. Lauttia J, Helminen TM, Leppänen JM, Yrttiaho S, Eriksson K, Hietanen JK, Kylliäinen A (2019): Atypical pattern of frontal EEG asymmetry for direct gaze in young children with autism spectrum disorder. *J Autism Dev Disord* 49:3592–3601.

27. Dubois AEE, Audet-Duchesne E, Knoth IS, Martin CO, Jizi K, Tamer P, et al. (2025): Genetic modulation of brain dynamics in neurodevelopmental disorders: The impact of copy number variations on resting-state EEG. *Transl Psychiatry* 15:139.

28. Borlot F, Regan BM, Bassett AS, Stavropoulos DJ, Andrade DM (2017): Prevalence of pathogenic copy number variation in adults with pediatric-onset epilepsy and intellectual disability. *JAMA Neurol* 74:1301–1311.

29. Malone SM, Burwell SJ, Vaidyanathan U, Miller MB, McGue M, Iacono WG (2014): Heritability and molecular-genetic basis of resting EEG activity: A genome-wide association study. *Psychophysiology* 51:1225–1245.

30. Smit DJA, Wright MJ, Meyers JL, Martin NG, Ho YYW, Malone SM, et al. (2018): Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity. *Hum Brain Mapp* 39:4183–4195.

31. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. (2020): Parameterizing neural power spectra into periodic and aperiodic components. *Nat Neurosci* 23:1655–1665.

32. Ostlund B, Donoghue T, Anaya B, Gunther KE, Karalunas SL, Voytek B, Pérez-Edgar KE (2022): Spectral parameterization for studying neurodevelopment: How and why. *Dev Cogn Neurosci* 54:101073.

33. American Psychiatric Association (2000): Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. Washington, DC: American Psychiatric Publication.

34. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop S (2012): Autism Diagnostic Observation Schedule: Part I, 2nd ed. Torrance, CA: Western Psychological Services.

35. Rutter M, Le Couteur A, Lord C (2003): ADI-R: Autism Diagnostic Interview-Revised (ADI-R). Los Angeles, CA: Western Psychological Services.

36. Elliott CD (2007): Differential Ability Scales, 2nd ed. San Antonio, TX: The Psychological Corporation.

37. Semel E, Wiig EH, Secord WA (2003): Clinical Evaluation of Language Fundamentals, 4th ed. Toronto, Canada: The Psychological Corporation/A Harcourt Assessment Company. (CELF-4).

38. Constantino JN (2012): Social Responsiveness Scale, 2nd ed. Torrance, CA: Western Psychological Services.

39. Sparrow S, Cicchetti D, Balla D (2005): Vineland Adaptive Behavior Scales, 2nd ed. Circle Pines, MN: American Guidance Service. (Vineland-II).

40. Rutter ML, Bailey A, Lord C (2003): Social Communication Questionnaire. Torrance, CA: Western Psychological Services.

41. Levin AR, Méndez Leal AS, Gabard-Durnam LJ, O'Leary HM (2018): BEAPP: The batch electroencephalography automated processing platform. *Front Neurosci* 12:513.

42. Gabard-Durnam LJ, Méndez Leal AS, Wilkinson CL, Levin AR (2018): The Harvard Automated Processing Pipeline for Electroencephalography (HAPP): Standardized processing software for developmental and high-artifact data. *Front Neurosci* 12:97.

43. Caffarra S, Kanopka K, Kruper J, Richie-Halford A, Roy E, Rokem A, Yeatman JD (2024): Development of the alpha rhythm is linked to visual white matter pathways and visual detection performance. *J Neurosci* 44:e0684232023.

44. Turner C, Baylan S, Bracco M, Cruz G, Hanzal S, Keime M, et al. (2023): Developmental changes in individual alpha frequency: Recording EEG data during public engagement events. *Imaging Neurosci (Camb)* 1:1–14.

45. Freschl J, Azizi LA, Balboa L, Kaldy Z, Blaser E (2022): The development of peak alpha frequency from infancy to adolescence and its role in visual temporal processing: A meta-analysis. *Dev Cogn Neurosci* 57:101146.

46. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. (2007): PLINK: A tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* 81:559–575.

47. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, et al. (2011): Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. *Neuron* 70:863–885.

48. Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. (2015): Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. *Neuron* 87:1215–1233.

49. R Core Team (2019): R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available at: <https://www.R-project.org/>. Accessed September 2, 2025.

50. Bates D, Mächler M, Bolker BM, Walker SC (2015): Fitting linear mixed-effects models using lme4. *J Stat Softw* 67:1–48.

51. Wickham H (2016): *ggplot2: Elegant Graphics for Data Analysis*. New York, NY: Springer-Verlag.

52. Neuhaus E, Santhosh M, Kresse A, Aylward E, Bernier R, Bookheimer S, et al. (2023): Frontal EEG alpha asymmetry in youth with autism: Sex differences and social-emotional correlates. *Autism Res* 16:2364–2377.

53. Ahveninen J, Lin FH, Kivisaari R, Autti T, Hämäläinen M, Stufflebeam S, et al. (2007): MRI-constrained spectral imaging of benzodiazepine modulation of spontaneous neuromagnetic activity in human cortex. *NeuroImage* 35:577–582.

54. Lorincz ML, Kékesi KA, Juhász G, Crunelli V, Hughes SW (2009): Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. *Neuron* 63:683–696.

55. Lozano-Soldevilla D, ter Huurne N, Cools R, Jensen O (2014): GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance. *Curr Biol* 24:2878–2887.

56. Schreckenberger M, Lange-Asschenfeldt C, Lochmann M, Mann K, Siessmeier T, Buchholz HG, et al. (2004): The thalamus as the generator and modulator of EEG alpha rhythm: A combined PET/EEG study with lorazepam challenge in humans. *NeuroImage* 22:637–644.

57. Zhou D, Lebel C, Evans A, Beaulieu C (2013): Cortical thickness asymmetry from childhood to older adulthood. *NeuroImage* 83:66–74.

58. Olejarczyk E, Bogucki P, Sobieszek A (2017): The EEG split alpha peak: Phenomenological origins and methodological aspects of detection and evaluation. *Front Neurosci* 11:506.

59. Andrews DS, Diers K, Lee JK, Harvey DJ, Heath B, Cordero D, et al. (2024): Sex differences in trajectories of cortical development in autistic children from 2–13 years of age. *Mol Psychiatry* 29:3440–3451.

60. Arutunian V, Santhosh M, Neuhaus E, Borland H, Tompkins C, Bernier RA, et al. (2024): The relationship between gamma-band neural oscillations and language skills in youth with autism spectrum disorder and their first-degree relatives. *Mol Autism* 15:19.

61. Villemonteix T, De Brito SA, Slama H, Kavec M, Balériaux D, Metens T, et al. (2015): Grey matter volume differences associated with gender in children with attention-deficit/hyperactivity disorder: A voxel-based morphometry study. *Dev Cogn Neurosci* 14:32–37.

62. Mahone EM, Wodka EL (2008): The neurobiological profile of girls with ADHD. *Dev Disabil Res Rev* 14:276–284.

63. Auwerx C, Jélooo M, Sadler MC, Tesio N, Ojavee S, Clark CJ, et al. (2024): Rare copy-number variants as modulators of common disease susceptibility. *Genome Med* 16:5.

64. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. (2011): A copy number variation morbidity map of developmental delay. *Nat Genet* 43:838–846.

65. Gupta AR, Westphal A, Yang DYJ, Sullivan CAW, Eilbott J, Zaidi S, et al. (2017): Neurogenetic analysis of childhood disintegrative disorder. *Mol Autism* 8:19.

66. Jack A, Sullivan CAW, Aylward E, Bookheimer SY, Dapretto M, Gaab N, et al. (2021): A neurogenetic analysis of female autism. *Brain* 144:1911–1926.

67. Mefford HC, Muhle H, Ostertag P, Von Spiczak S, Bysusse K, Baker C, et al. (2010): Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsies. *PLoS Genet* 6:e1000962.